Analysis of the duration-hardness ratio plane of gamma-ray bursts with skewed distributions

Mariusz Tarnopolski
Astronomical Observatory, Jagiellonian University, Orla 171, 30-244, Kraków, Poland
e-mail: mariusz.tarnopolski@uj.edu.pl

Abstract

It was recently shown that the $T_{90}-H_{32}$ distributions of gamma-ray bursts from CGRO/BATSE and Fermi/GBM are well described by a mixture of only two skewed components, making the presumed third, intermediate class unnecesary. The Swift/BAT, Konus-Wind, RHESSI and Suzaku/WAM data sets are found to be consistent with a two-class description as well.

Key words. gamma-ray burst: general - methods: data analysis - methods: statistical

1. Introduction

The two widely accepted classes of gammaray bursts (GRBs), short and long, are with confidence ascribed to mergers of compact objects and collapse of massive stars, respectively. A third, intermediate class Horváth 1998), remains putative. Its existence was claimed based on univariate and bivariate analyses of GRB observables modeled with Gaussian distributions (Mukherjee et al. 1998; Horváth 2002, Horváth et al. 2008; Zhang \& Choi 2008; Huja et al. 2009; Řípa et al. 2009; Horváth et al. | 2010, Veres et al. |2010; Zitouni et al.|2015, Zhang et al. 2016, Horváth et al. 2018), but also has been put into doubt several times (Bystricky et al. 2012; Řípa et al. 2012, Tarnopolski 2015; Zitouni et al. 2015; Narayana Bhat et al. 2016; Tarnopolski 2016b|ct Ohmori et al.|2016, Yang et al. 2016; Kulkarni \& Desai 2017; Zitouni et al. |2018). Gaussian models, however, may not be the
appropriate approach (Koen \& Bere 2012; Tarnopolski 2015; Koen \& Bere 2017), as it has been already shown that the univariate distributions of T_{90} (Tarnopolski 2016alb, Kwong \& Nadarajah 2018) and bivariate $T_{90}-H_{32}$ ones (Tarnopolski 2019) are better described by mixtures of two skewed components rather than three Gaussian ones. In this work the $T_{90}-H_{32}$ plane is examined in case of data sets from four other satellites: Swift/BAT, KonusWind, RHESSI, and Suzaku/WAM.

2. Data

The following data sets are investigated: 1033 GRBs from the Swift/BAT catalogue (Lien et al. 2016), 1143 GRBs observed by KonusWind (Svinkin et al. 2016), 427 GRBs detected by RHESSI (Rípa et al. 2009), and

[^0]

Fig. 1. Fittings and $\Delta I C$ scores for Swift GRBs.

259 GRBs from Suzaku/WAM Ohmori et al 2016). The bivariate distributions of duration T_{90} and hardness ratio H_{32} in the log-log plane are examined. For each instrument, fluences F in different energy bands are available, hence the definitions of H_{32} are: $H_{32}=\frac{F_{50-100 \mathrm{kv}}}{F_{25-50 \mathrm{keV}}}$ for Swift; $H_{32}=\frac{F_{200-750 \mathrm{keV}}}{F_{50-20 \mathrm{keV}}}$ for Konus; $H_{32}=$ $\frac{F_{120-1500 \mathrm{keV}}}{F_{25-120 \mathrm{keV}}}$ for RHESSI; and $H_{32}=\frac{F_{240-520 \mathrm{keV}}}{F_{110-240 \mathrm{keV}}}$ for Suzaku.

3. Methodology

The methodology is the same as in (Tarnopolski 2019). Two- and threecomponent mixtures of the following bivariate distributions are fitted: regular Gaussian

Fig. 2. Fittings and $\Delta I C$ scores for Konus GRBs.
(2G and 3G), skew-normal (2 SN and 3 SN), Student t (2T and 3T), and skew-Student (2ST and 3 ST). The fits are compared using the small sample Akaike (Hurvich \& Tsai 1989) and Bayesian Information Criteria $\left(A I C_{c}\right.$ and $B I C) . A I C_{c}$ is liberal, and has a tendency to overfit. BIC is much more stringent, and tends to underfit. Therefore, when the two IC point at different models, the truth lies somewhere in between. (See Tarnonolski 2019 for details.) The fitting is performed using the R package mixsmsn ${ }^{2}$ (Prates et ai. 2013).

[^1]

Fig. 3. Fittings and $\triangle I C$ scores for RHESSI GRBs.

4. Results

The results are displayed in Figs $1 / 4$. For Swift and Konus no clear answer is obtained, however both $I C$ point at skewed distributions (see bottom panels of Figs. 1 and 3). For Swift, the $B I C$ yields 2 ST and 2 SN , while $A I C_{c}$ gives 3ST and 3SN. Henceforth, the lack of a third component in the data cannot be confidently ruled out; on the other hand, its presence is also not unambiguously supported. Konus gives remarkably similar results.

In case of RHESSI (see Fig. K^{3}), both IC point unequivocally at 2 -component mixtures, however BIC prefers symmetric distributions (2G and 2T), while $A I C_{c}$ hints at skewed ones (2ST and 2SN). Suzaku, the smallest data set

Fig. 4. Fittings and $\Delta I C$ scores for Suzaku GRBs.
examined, can be with no doubt well modeled with only 2 components, with 2 G being the simplest model (see Fig_4).

5. Discussion

GRBs from BATSE and Fermi can be confidently divided into only two classical groups, short and long; the elusive soft-intermediate class is not necessary to satisfactorily describe the data (Tarnopolski 2015, 2016a, b, 2019). In case of Swift and Konus, however, no firm conclusion can be formulated-the IC point at either two or three classes. The smallest data sets-RHESSI and Suzaku-can be adequately construed as consisting of two groups, although due to the smallness of these samples,
the more subtle structure in the $T_{90}-H_{32}$ plane can simply be not traced prominently enough.

The asymmetry of the data, manifested via skewed distributions, might come from a nonsymmetric distribution of the envelope masses of the progenitors of the long GRBs or other inherently asymmetrical distributions of physical parameters governing the progenitors or GRBs themselves; from the impact of the redshift distribution on the observables; or a combination of the listed possibilities (Tarnopolski 2015, Zitouni et al. 2015, Tarnopolski 2016abblc, 2019).

6. Conclusions

No definite signs of the putative third GRB class are visible in the examined data. On the other hand, the Swift and Konus data yield inconclusive. It is desirable to have the exact shape of the observed distributions derived from a physical theory, or inferred on the grounds of statistics, which has not been convincingly realized thus far.

Acknowledgements. The author is grateful to Péter Veres for the Fermi data, Dmitry Svinkin for the Konus data, Norisuke Ohmori for the Suzaku data, Amy Lien for help with the Swift data, and Jakub Řípa and Natalia Żywucka for discussions. Support by the Polish National Science Center through an OPUS grant No. 2017/25/B/ST9/01208 is acknowledged.

References

Bystricky, P., Mészáros, A., \& Řípa, J. 2012, in Proceedings of the 21st Annual Conference of Doctoral Students - WDS 2012, edited by J. Safrankova and J. Pavlu (MatfyzPress, Praga), 129
Horváth, I. 1998, ApJ, 508, 757
Horváth, I. 2002, A\&A, 392, 791

Horváth, I., et al. 2008, A\&A, 489, L1
Horváth, I., Bagoly, Z., Balázs, L. G., et al. 2010, ApJ, 713, 552
Horváth, I., Tóth, B. G., Hakkila, J., et al. 2018, Ap\&SS, 363, 53
Huja, D., Mészáros, A., \& Řípa, J. 2009, A\&A, 504, 67
Hurvich, C. M. \& Tsai, C.-L. 1989, Biometrika, 76, 297
Koen, C. \& Bere, A. 2012, MNRAS, 420, 405
Koen, C. \& Bere, A. 2017, MNRAS, 471, 2771
Kulkarni, S. \& Desai, S. 2017, Ap\&SS, 362, 70
Kwong, H. S. \& Nadarajah, S. 2018, MNRAS, 473, 625
Lien, A., Sakamoto, T., Barthelmy, S. D., et al. 2016, ApJ, 829, 7
Mukherjee, S., Feigelson, E. D., Jogesh Babu, G., et al. 1998, ApJ, 508, 314

Narayana Bhat, P., Meegan, C. A., von Kienlin, A., et al. 2016, ApJS, 223, 28

Ohmori, N., Yamaoka, K., Ohno, M., et al. 2016, PASJ, 68, S30
Prates, M., Lachos, V., \& Cabral, C. B. 2013, Journal of Statistical Software, 54, 1
Řípa, J., Mészáros, A., Wigger, C., et al. 2009, A\&A, 498, 399
Řípa, J., et al. 2012, ApJ, 756, 44
Svinkin, D. S., Frederiks, D. D., Aptekar, R. L., et al. 2016, ApJS, 224, 10
Tarnopolski, M. 2015, A\&A, 581, A29
Tarnopolski, M. 2016a, MNRAS, 458, 2024
Tarnopolski, M. 2016b, Ap\&SS, 361, 125
Tarnopolski, M. 2016c, New Astron., 46, 54
Tarnopolski, M. 2019, ApJ, 870, 105
Veres, P., et al. 2010, ApJ, 725, 1955
Yang, E. B., Zhang, Z. B., \& Jiang, X. X. 2016, Ap\&SS, 361, 257
Zhang, Z.-B. \& Choi, C.-S. 2008, A\&A, 484, 293
Zhang, Z.-B., et al. 2016, MNRAS, 462, 3243
Zitouni, H., et al. 2015, Ap\&SS, 357, 7
Zitouni, H., et al. 2018, Ap\&SS, 363, 223

[^0]: ${ }^{1}$ Mukherjee et al. (1998) noted that "the distributions often seem bimodal with asymmetrical nonGaussian shapes", but failed to employ skewed distributions in modeling and proceeded considering multinormal distributions.

[^1]: 2 httnc://sran.r proinct.org/web/
 packages/mixsmon/index.html

