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Abstract. It was recently shown that the T90 − H32 distributions of gamma-ray bursts from
CGRO/BATSE and Fermi/GBM are well described by a mixture of only two skewed compo-
nents, making the presumed third, intermediate class unnecesary. The Swift/BAT, Konus-Wind,
RHESSI and Suzaku/WAM data sets are found to be consistent with a two-class description as
well.
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1. Introduction

The two widely accepted classes of gamma-
ray bursts (GRBs), short and long, are with
confidence ascribed to mergers of compact ob-
jects and collapse of massive stars, respec-
tively. A third, intermediate class (Horváth
1998), remains putative. Its existence was
claimed based on univariate and bivariate
analyses of GRB observables modeled with
Gaussian distributions (Mukherjee et al. 1998;
Horváth 2002; Horváth et al. 2008; Zhang
& Choi 2008; Huja et al. 2009; Řı́pa et al.
2009; Horváth et al. 2010; Veres et al. 2010;
Zitouni et al. 2015; Zhang et al. 2016; Horváth
et al. 2018), but also has been put into doubt
several times (Bystricky et al. 2012; Řı́pa
et al. 2012; Tarnopolski 2015; Zitouni et al.
2015; Narayana Bhat et al. 2016; Tarnopolski
2016b,c; Ohmori et al. 2016; Yang et al. 2016;
Kulkarni & Desai 2017; Zitouni et al. 2018).
Gaussian models, however, may not be the

appropriate approach1 (Koen & Bere 2012;
Tarnopolski 2015; Koen & Bere 2017), as it
has been already shown that the univariate dis-
tributions of T90 (Tarnopolski 2016a,b; Kwong
& Nadarajah 2018) and bivariate T90 − H32
ones (Tarnopolski 2019) are better described
by mixtures of two skewed components rather
than three Gaussian ones. In this work the
T90−H32 plane is examined in case of data sets
from four other satellites: Swift/BAT, Konus-
Wind, RHESSI, and Suzaku/WAM.

2. Data

The following data sets are investigated: 1033
GRBs from the Swift/BAT catalogue (Lien
et al. 2016), 1143 GRBs observed by Konus-
Wind (Svinkin et al. 2016), 427 GRBs de-
tected by RHESSI (Řı́pa et al. 2009), and

1 Mukherjee et al. (1998) noted that ”the distri-
butions often seem bimodal with asymmetrical non-
Gaussian shapes”, but failed to employ skewed dis-
tributions in modeling and proceeded considering
multinormal distributions.
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Fig. 1. Fittings and ∆IC scores for Swift GRBs.

259 GRBs from Suzaku/WAM (Ohmori et al.
2016). The bivariate distributions of duration
T90 and hardness ratio H32 in the log-log plane
are examined. For each instrument, fluences F
in different energy bands are available, hence
the definitions of H32 are: H32 =

F50−100 keV
F25−50 keV

for Swift; H32 =
F200−750 keV
F50−200 keV

for Konus; H32 =
F120−1500 keV
F25−120 keV

for RHESSI; and H32 =
F240−520 keV
F110−240 keV

for
Suzaku.

3. Methodology

The methodology is the same as in
(Tarnopolski 2019). Two- and three-
component mixtures of the following bivariate
distributions are fitted: regular Gaussian
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Fig. 2. Fittings and ∆IC scores for Konus GRBs.

(2G and 3G), skew-normal (2SN and 3SN),
Student t (2T and 3T), and skew-Student (2ST
and 3ST). The fits are compared using the
small sample Akaike (Hurvich & Tsai 1989)
and Bayesian Information Criteria (AICc and
BIC). AICc is liberal, and has a tendency to
overfit. BIC is much more stringent, and tends
to underfit. Therefore, when the two IC point
at different models, the truth lies somewhere
in between. (See Tarnopolski 2019 for details.)
The fitting is performed using the R package
mixsmsn2 (Prates et al. 2013).

2 https://cran.r-project.org/web/
packages/mixsmsn/index.html

https://cran.r-project.org/web/packages/mixsmsn/index.html
https://cran.r-project.org/web/packages/mixsmsn/index.html
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Fig. 3. Fittings and ∆IC scores for RHESSI GRBs.

4. Results

The results are displayed in Figs. 1–4. For Swift
and Konus no clear answer is obtained, how-
ever both IC point at skewed distributions (see
bottom panels of Figs. 1 and 2). For Swift, the
BIC yields 2ST and 2SN, while AICc gives
3ST and 3SN. Henceforth, the lack of a third
component in the data cannot be confidently
ruled out; on the other hand, its presence is also
not unambiguously supported. Konus gives re-
markably similar results.

In case of RHESSI (see Fig. 3), both IC
point unequivocally at 2-component mixtures,
however BIC prefers symmetric distributions
(2G and 2T), while AICc hints at skewed ones
(2ST and 2SN). Suzaku, the smallest data set
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Fig. 4. Fittings and ∆IC scores for Suzaku GRBs.

examined, can be with no doubt well modeled
with only 2 components, with 2G being the
simplest model (see Fig. 4).

5. Discussion

GRBs from BATSE and Fermi can be confi-
dently divided into only two classical groups,
short and long; the elusive soft-intermediate
class is not necessary to satisfactorily describe
the data (Tarnopolski 2015, 2016a,b, 2019).
In case of Swift and Konus, however, no firm
conclusion can be formulated—the IC point
at either two or three classes. The smallest
data sets—RHESSI and Suzaku—can be ade-
quately construed as consisting of two groups,
although due to the smallness of these samples,
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the more subtle structure in the T90−H32 plane
can simply be not traced prominently enough.

The asymmetry of the data, manifested via
skewed distributions, might come from a non-
symmetric distribution of the envelope masses
of the progenitors of the long GRBs or other in-
herently asymmetrical distributions of physical
parameters governing the progenitors or GRBs
themselves; from the impact of the redshift dis-
tribution on the observables; or a combination
of the listed possibilities (Tarnopolski 2015;
Zitouni et al. 2015; Tarnopolski 2016a,b,c,
2019).

6. Conclusions

No definite signs of the putative third GRB
class are visible in the examined data. On the
other hand, the Swift and Konus data yield
inconclusive. It is desirable to have the ex-
act shape of the observed distributions de-
rived from a physical theory, or inferred on the
grounds of statistics, which has not been con-
vincingly realized thus far.
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Veres for the Fermi data, Dmitry Svinkin for the
Konus data, Norisuke Ohmori for the Suzaku data,
Amy Lien for help with the Swift data, and Jakub
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